Publications (2023)


1. Mason, M. M.; Wachs, I. E.; Dixon, D. A. Assignment of Vibrational Bands of Critical Surface Species Containing Nitrogen in the Selective Catalytic Reduction of NO by NH3. J. Phys. Chem. A 2023, 127, 240-249. (https://doi.org/10.1021/acs.jpca.2c08580)

2. Smith, E.; Fairley, N.; Licence, P.; Jones, R.; Baltrusaitis, J. Modification of conventional peak shapes to accurately represent spectral asymmetry: High-Resolution X-ray photoelectron spectra of [C4C1Pyrr][NTf2] and [C8C1Im][NTf2] ionic liquids. Appl. Surf. Sci. 2023, 611, 155314. (https://doi.org/10.1016/j.apsusc.2022.155314)

3. Fairley, N.; Bargiela, P.; Roberts, A.; Fernandez, V.; Baltrusaitis, J. Practical guide to understanding goodness-of-fit metrics used in chemical state modeling of x-ray photoelectron spectroscopy data by synthetic line shapes using nylon as an example. J. Vac. Sci. Technol., A 2023, 41, 013203. (https://doi.org/10.1116/6.0002196)

4. Fernandez, V.; Morgan, D.; Bargiela, P.; Fairley, N.; Baltrusaitis, J. Combining PCA and nonlinear fitting of peak models to re-evaluate C 1s XPS spectrum of cellulose. Appl. Surf. Sci. 2023, 614, 156182. (https://doi.org/10.1016/j.apsusc.2022.156182)

5. Jamdade, S.; Gurnani, R.; Fang, H.; Boulfelfel, S. E.; Ramprasad, R.; Sholl, D. S. Identifying High-Performance Metal–Organic Frameworks for Low-Temperature Oxygen Recovery from Helium by Computational Screening. Ind. Eng. Chem. Res. 2023, 62, 1927-1935. (https://doi.org/10.1021/acs.iecr.2c03544)

6. Fernandez, V.; Fairley, N.; Baltrusaitis, J. Surface analysis insight note: Synthetic line shapes, integration regions and relative sensitivity factors. Surf. Interface Anal. 2023, 55, 3-9. (https://doi.org/10.1002/sia.7155)

7. Fairley, N.; Compagnini, G.; Scardaci, V.; Baltrus, J.; Roberts, A.; Barlow, A.; Cumpson, P.; Baltrusaitis, J. Surface analysis insight note: Differentiation methods applicable to noisy data for determination of sp2- versus sp3-hybridization of carbon allotropes and AES signal strengths. Surf. Interface Anal. 2023, 55, 165-175. (https://doi.org/10.1002/sia.7157)

8. Paladugu, S.; Metz, P. C.; Luo, S.; Li, M.; Liu, J.; Meyer, H., III; Wu, Y.; Wu, Z.; Page, K. In Situ Neutron Scattering Studies on the Oxidation and Reduction of CeO2 and Pt–CeO2 Nanorods. J. Phys. Chem. C 2023, 127, 3689-3697. (https://doi.org/10.1021/acs.jpcc.2c07398)

9. Rimsza, J.; Nenoff, T. M. Design of enhanced porous organic cage solubility in Type 2 porous liquids. J. Mol. Liq. 2023, 377, 121536. (https://doi.org/10.1016/j.molliq.2023.121536)

10. Lontchi, E.; Mason, M. M.; Vasiliu, M.; Dixon, D. A. Prediction of the structures and heats of formation of MO2, MO3, and M2O5 for M = V, Nb, Ta, Pa. Phys. Chem. Chem. Phys. 2023, 25, 8355-8368. (https://doi.org/10.1039/D3CP00380A)

11. Narayanan, P.; Lively, R. P.; Jones, C. W. Effect of SO2 on the CO2 Capture Performance of Self-Supported Branched Poly(ethyleneimine) Scaffolds. Energy Fuels 2023, 37, 5257-5269. (https://doi.org/10.1021/acs.energyfuels.2c03846)

12. Christian, M. S.; Nenoff, T. M.; Rimsza, J. M. Effect of Linker Structure and Functionalization on Secondary Gas Formation in Metal–Organic Frameworks. J. Phys. Chem. A 2023, 127, 2881-2888. (https://doi.org/10.1021/acs.jpca.2c07751)

13. Gurnani, R.; Kuenneth, C.; Toland, A.; Ramprasad, R. Polymer Informatics at Scale with Multitask Graph Neural Networks. Chem. Mater. 2023, 35, 1560-1567. (https://doi.org/10.1021/acs.chemmater.2c02991)

14. Jiang, X.; Lis, B. M.; Wu, Y.; Wachs, I. E.; Wu, Z. Effect of the Molecular Structure of Surface Vanadia on Activity and Regenerability of VOx/In2O3 Catalysts for CO2-Assisted Oxidative Dehydrogenation of Propane. J. Phys. Chem. C 2023, 127, 6311-6320. (https://doi.org/10.1021/acs.jpcc.3c00183)

15. Kumar, P.; Kannimuthu, K.; Zeraati, A. S.; Roy, S.; Wang, X.; Wang, X.; Samanta, S.; Miller, K. A.; Molina, M.; Trivedi, D., et al. High-Density Cobalt Single-Atom Catalysts for Enhanced Oxygen Evolution Reaction. J. Am. Chem. Soc. 2023, 145, 8052-8063. (https://doi.org/10.1021/jacs.3c00537)

16. Carter, E. A.; Hungerford, J. T.; Joshi, J. N.; DeWitt, S. J. A.; Jiang, X.; Marszalek, B.; Lively, R. P.; Walton, K. S. Chemical Stability of MIL-101(Cr) upon Adsorption of SO2 and NO2 under Dry and Humid Conditions. Ind. Eng. Chem. Res. 2023, 62, 8864-8872. (https://doi.org/10.1021/acs.iecr.3c00209)

17. Moon, H. J.; Sekiya, R.-S.; Jones, C. W. Probing the Morphology and Mobility of Amines in Porous Silica CO2 Sorbents by 1H T1–T2 Relaxation Correlation NMR. J. Phys. Chem. C 2023, 127, 11652-11665. (https://doi.org/10.1021/acs.jpcc.3c02441)

18. Barauskas, D.; Pelenis, D.; Dzikaras, M.; Vanagas, G.; Mikolajūnas, M.; Baltrusaitis, J.; Viržonis, D. Highly selective capacitive micromachined ultrasonic transducer–based miniature gravimetric CO2 sensor with in-situ calibration for relative humidity. Sens. Actuators, B 2023, 393, 134178. (https://doi.org/10.1016/j.snb.2023.134178)

19. Hurlock, M. J.; Christian, M. S.; Fritzsching, K. J.; Rademacher, D. X.; Rimsza, J. M.; Nenoff, T. M. Experimental and Computational Mechanisms that Govern Long-Term Stability of CO2-Adsorbed ZIF-8-Based Porous Liquids. ACS Appl. Mater. Interfaces 2023, 15, 32792-32802. (https://doi.org/10.1021/acsami.3c06177)

20. Borne, I.; Saigal, K.; Jones, C. W.; Lively, R. P. Thermodynamic Evidence for Type II Porous Liquids. Ind. Eng. Chem. Res. 2023, 62, 11689-11696. (https://doi.org/10.1021/acs.iecr.3c01201)

21. Yu, Z.; Jamdade, S.; Yu, X.; Cai, X.; Sholl, D. S. Efficient Generation of Large Collections of Metal–Organic Framework Structures Containing Well-Defined Point Defects. J. Phys. Chem. Lett. 2023, 14, 6658-6665. (https://doi.org/10.1021/acs.jpclett.3c01524)

22. Holmes, H. E.; Schreck, R. D.; Narayanan, P.; Ghosh, S.; Sun, W.; Realff, M. J.; Lively, R. P. Evaluating degradation of CO2 adsorbents in flue gas from bioenergy with carbon capture and storage. Sustainable Energy Fuels 2023, 7, 4602-4607. (https://doi.org/10.1039/D3SE00823A)

23. Ganesan, A.; Leisen, J.; Thyagarajan, R.; Sholl, D. S.; Nair, S. Hierarchical ZIF-8 Materials via Acid Gas-Induced Defect Sites: Synthesis, Characterization, and Functional Properties. ACS Appl. Mater. Interfaces 2023, 15, 40623-40632. (https://doi.org/10.1021/acsami.3c08344)

24. Fairley, N.; Bargiela, P.; Huang, W.-M.; Baltrusaitis, J. Principal Component Analysis (PCA) unravels spectral components present in XPS spectra of complex oxide films on iron foil. Appl. Surf. Sci. Adv. 2023, 17, 100447. (https://doi.org/10.1016/j.apsadv.2023.100447)

25. Chen, J.; Moon, H. J.; Kim, K. I.; Choi, J. I.; Narayanan, P.; Sakwa-Novak, M. A.; Jones, C. W.; Jang, S. S. Distribution and Transport of CO2 in Hyperbranched Poly(ethylenimine)-Loaded MCM-41: A Molecular Dynamics Simulation Approach. ACS Appl. Mater. Interfaces 2023, 15, 43678-43690. (https://doi.org/10.1021/acsami.3c07040)

26. Moon, H. J.; Carrillo, J. M. Y.; Jones, C. W. Distribution and Mobility of Amines Confined in Porous Silica Supports Assessed via Neutron Scattering, NMR, and MD Simulations: Impacts on CO2 Sorption Kinetics and Capacities. Acc. Chem. Res. 2023, 56, 2620-2630. (https://doi.org/10.1021/acs.accounts.3c00363)

27. Bingel, L. W.; Yu, Z.; Sholl, D. S.; Walton, K. S. Does Mixed Linker-Induced Surface Heterogeneity Impact the Accuracy of IAST Predictions in UiO-66-NH2? J. Phys. Chem. C 2023, 127, 20881-20889. (https://doi.org/10.1021/acs.jpcc.3c04845)

28. Joyner, N. A.; Lee, Z. R.; Dixon, D. A. Binding of SO3 to Group 4 Transition Metal Oxide Nanoclusters. J. Phys. Chem. A 2023, 127, 45, 9541-9549. (https://doi.org/10.1021/acs.jpca.3c06389)

29. Najimu, M.; Jo, S.; Gilliard-AbdulAziz, K. L. Co-Exsolution of Ni-Based Alloy Catalysts for the Valorization of Carbon Dioxide and Methane. Acc. Chem. Res. 2023, 56, 3132-3141. (https://doi.org/10.1021/acs.accounts.3c00404)

30. Proaño, L.; Jones, C. W. CO2 hydrogenation to methanol over ceria-zirconia NiGa alloy catalysts. Appl. Catal. A: Gen. 2024, 669, 119485. (https://doi.org/10.1016/j.apcata.2023.119485)

31. Confer, M. P.; Dixon, D. A. Acid Gas Capture by Nitrogen Heterocycle Ring Expansion. J. Phys. Chem. A 2023, 127, 45, 10171-10183. (https://doi.org/10.1021/acs.jpca.3c06094)

32. Yang, Y.; Yu, Z.; Sholl, D. S. Machine Learning Models for Predicting Molecular Diffusion in Metal−Organic Frameworks Accounting for the Impact of Framework Flexibility. Chem. Mater. 2023, 35, 23, 10156-10168. (https://doi.org/10.1021/acs.chemmater.3c02321)

33. Ganesan, A.; Metz, P. C.; Thyagarajan, R.; Chang, Y.; Purdy, S. C.; Jayachandrababu, K. C.; Page, K.; Sholl, D. S.; Nair, S. Structural and Adsorption Properties of ZIF-8-7 Hybrid Materials Synthesized by Acid Gas-Assisted and De Novo Routes. J. Phys. Chem. C 2023, 127, 49, 23956-23965. (https://doi.org/10.1021/acs.jpcc.3c06334)

34. Fairley, N.; Bargiela, P.; Baltrusaitis, J. Surface analysis insight note: Illustrating the effect of adventitious contamination on Pt photoemission peak intensities. Surf. Interface Anal. 2023, 56, 2, 122-125. (https://doi.org/10.1002/sia.7276)

35. Andress, T. D.; Maxwell, J.; McNeill, A.; Stanbury, D.; Dixon, D. Prediction of Aqueous Reduction Potentials of X, ChH, and XO Radicals with X = Halogen and Ch = Chalcogen. J. Phys. Chem. A 2023, 127, 50, 10600-10612. (https://doi.org/10.1021/acs.jpca.3c06123)

36. Christian, M.; Hurlock, M.; Nenoff, T.; Rimsza, J. CO2 Adsorption Mechanisms at the ZIF-8 Interface in a Type 3 Porous Liquid. J. Mol. Liq. 2023, 395, 123913. (https://doi.org/10.1016/j.molliq.2023.123913)

37. Bargiela, P.; Fernandez, V.; Ravisy, W.; Morgan, D.; Richard-Plouet, M.; Fairley, N.; Baltrusaitis, J. Surface Analysis Insight Note: Observations relating to photoemission peak shapes, oxidation state, and chemistry of titanium oxide films. Surf. Interface Anal. 2023. (https://doi.org/10.1002/sia.7283)

38. Hurlock, M.; Christian, M.; Rimsza, J.; Nenoff, T. Design Principles Guiding Solvent Size Selection in ZIF-Based Type 3 Porous Liquids for Permanent Porosity. ACS Mater. Au. 2023. (https://doi.org/10.1021/acsmaterialsau.3c00094)